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Large scale patterns of genetic variation
and differentiation in sugar maple from
tropical Central America to temperate
North America
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Abstract

Background: Geological events in the latter Cenozoic have influenced the distribution, abundance and genetic
structure of tree populations in temperate and tropical North America. The biogeographical history of temperate
vegetation that spans large ranges of latitude is complex, involving multiple latitudinal shifts that might have
occurred via different migration routes. We determined the regional structuring of genetic variation of sugar maple
(Acer saccharum subsp. saccharum) and its only subspecies in tropical America (Acer saccharum subsp. skutchii)
using nuclear and chloroplast data. The studied populations span a geographic range from Maine, USA (46°N), to
El Progreso, Guatemala (15°N). We examined genetic subdivisions, explored the locations of ancestral haplotypes,
analyzed genetic data to explore the presence of a single or multiple glacial refugia, and tested whether genetic
lineages are temporally consistent with a Pleistocene or older divergence.

Results: Nuclear and chloroplast data indicated that populations in midwestern USA and western Mexico were highly
differentiated from populations in the rest of the sites. The time of the most recent common ancestor of the western
Mexico haplotype lineage was dated to the Pliocene (5.9 Ma, 95 % HPD: 4.3–7.3 Ma). Splits during the Pleistocene
separated the rest of the phylogroups. The most frequent and widespread haplotype occurred in half of the sites
(Guatemala, eastern Mexico, southeastern USA, and Ohio). Our data also suggested that multiple Pleistocene refugia
(tropics-southeastern USA, midwestern, and northeastern USA), but not western Mexico (Jalisco), contributed to
post-glacial northward expansion of ranges. Current southern Mexican and Guatemalan populations have reduced
population sizes, genetic bottlenecks and tend toward homozygosity, as indicated using nuclear and chloroplast
markers.

Conclusions: The divergence of western Mexican populations from the rest of the sugar maples likely resulted from
orographic and volcanic barriers to gene flow. Past connectivity among populations in the southeastern USA and
eastern Mexico and Guatemala possible occurred through gene flow during the Pleistocene. The time to the most
common ancestor values revealed that populations from the Midwest and Northeast USA represented different
haplotype lineages, indicating major divergence of haplotypes lineages before the Last Glacial Maximum and
suggesting the existence of multiple glacial refugia.
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Background
Geological events have affected the distributions and
levels of gene flow among populations of North
American tree species. Repeated glacial and intergla-
cial periods promoted range shifts of a number of
tree species during late Pliocene and the Quaternary
[1–4]. Studies indicate different genetic responses to
range contraction and expansion [5, 6]. For instance,
patterns of genetic diversity in temperate North
American trees (e.g., Carya illinoinensis, Liquidambar
styraciflua, Fagus grandifolia) include higher diversity
in southern, never-glaciated areas, and lower diversity
in northern areas where glaciated landmasses existed
[7–11]. Furthermore, there is evidence of the impact
of the Quaternary glaciations on the population
genetic structure of species (e.g., Acer rubrum, A. sac-
charinum, Quercus rubra) that survived in multiple
refugia closer to the ice margin [10–12]. Populations
of temperate tree species in the subtropics (e.g., Pinus
chiapensis, Picea chihuahuana, Pseudotsuga menziesii,
Fagus grandifolia var. mexicana) also show genetic
differentiation related to the history of migration and
isolation during glacial and interglacial periods [13–16].
Additionally, the distributions of many North American
temperate species include disjunct populations in cloud
forests in Mexico and Central America. These isolated
populations may have originated by ancient vicariant
events or through range fluctuations. These fluctuations
may have involved expansions into low elevation areas at
low latitudes during glacial episodes, and contractions to
high elevation refuges during warmer interglacial periods
[17, 18].
Periods of connectivity and disjunction among

North American and Central American refugial areas
and their consequences on the genetic structure of
the temperate tree populations are not known for
most species. Limited geographical sampling reduces
the capacity to reconstruct historical refugia and iden-
tify the spatial location of genetic breaks in temperate
tree species at a continental level. Assessing large-
scale relationships of populations should elucidate the
importance of range expansions and contractions in
producing the current distribution patterns of species,
as well as generate hypotheses regarding the genetic
structure and diversity of temperate tree lineages af-
fected by glaciation in the latter part of the Cenozoic.
Acer saccharum (sugar maple) is a widespread temper-

ate tree species. Study of the genetics of this species has
the potential to elucidate a late Pliocene and Quaternary
history that may be shared by other elements of the
North America flora. The species has a continuous dis-
tribution from southern Quebec to the southeastern
USA, and then is disjunct in distribution between the
eastern USA, Mexico, and Guatemala [19]. Fossil pollen

data suggest that A. saccharum underwent northward
geographic expansions from a single continuous ice-free
refugium in the Southern USA about 21,000 years B.P.,
around the beginning of the retreat of the Laurentide ice
sheet [17]. The evidence of the existence and location of
glacial refuges of sugar maple farther north than the
Lower Mississippi Valley has been inconclusive [20].
Nonetheless, the pollen record of some temperate
eastern taxa suggests the presence of small popula-
tions in the upper Midwest and in the Appalachian
region during glaciations [21, 22]. In addition, accord-
ing to genetic data, Acer rubrum likely existed north
of their Pleistocene pollen-based range limits, but, it
is not yet known if the same applies to A. saccharum
[21]. Acer saccharum exhibits some genetic differenti-
ation in southeastern Canada and northeastern USA,
but less genetic variation than other temperate trees
or shrubs [23]. In addition, some sugar maple
populations in Canada possess limited genetic differ-
entiation, possibly due to common ancestry or recent
colonization after a glacial period [24, 25]. These gen-
etic studies of sugar maple in North America were
conducted near its northern range limit, preventing
analysis of range expansions as a result of late Plio-
cene and Quaternary events. Furthermore, southern
sugar maple populations with disjunct distributions
from northern Mexico to Guatemala have not been
considered in reconstructions of historical migration
corridors.
We investigated patterns of genetic variation and

structure in extant populations of sugar maples in the
tropics and explored their genetic relationships with
populations in the temperate United States. We used
these data to infer their evolutionary history and
large-scale connectivity. We quantified within- and
among-population genetic variation across the species
range using chloroplast sequences and microsatellite
loci. We hypothesized that ancestral haplotypes have
persisted in tropical populations in unglaciated areas
that have changed little over long periods, and that
these populations have harbored higher genetic diver-
sity. Next, we estimated divergence times of haplo-
types among populations and considered whether
observed genetic subdivisions were temporally consist-
ent with the late Pliocene and Quaternary geologic
events. Finally, we tested the hypotheses of expand-
ing/contracting populations and the presence of a sin-
gle refugium versus multiple refugia during episodes
of glaciation. Based on our study, we propose the
location of more than one continuous ice-age refu-
gium in North America, as well as potential migration
routes in relation to the complex phylogeographical
patterns of North and Central American hardwood
forests.
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Methods
Field and laboratory procedures
Sampling and DNA extraction
Sampling of Acer saccharum subsp. saccharum was con-
ducted in old-growth forests of USA. Sites where the
species identity was doubted by botanists were not sam-
pled. Sampling in Mexico and Guatemala included all
known populations where A. saccharum subsp. skutchii
has been recorded [19]. These sugar maples belong to
the series Saccharodendron (Rafinesque) Murray, section
Acer, characterized by apetalous flowers and connate
calyces. Acer saccharum subsp. skutchii represents the
only member of the series distributed in Mexico and
Guatemala [26]. Both subspecies are morphologically the
most similar of the series [26].
The sampled populations of sugar maple spanned a

geographic range from Maine, USA (46°N), to El Pro-
greso, Guatemala (15°N). Fresh foliage was sampled
from 233 adult individuals from 16 native populations
(Fig. 1, Additional file 1). Twenty-five to 41 adult

individuals (>40 cm diameter at breast height) per
population, spaced a minimum of 50 m apart, were
sampled in the USA and, where the density permit-
ted, in Mexico. Because of low tree densities in
Guatemala, all mature trees observed were sampled
regardless of distances among them. The leaves were
collected with permits granted by forest reserves. The
first author performed the species identification.
Leaves were immediately dried in silica gel. Dry leaf
material (20–50 mg) was ground using a Mini Bead-
beater 8 (BioSpec Products, Bartlesville, OK). The
genomic DNA was extracted and purified using a
DNeasy Plant Mini Kit (Qiagen, Valencia, CA).

Genotyping microsatellites
Six microsatellite loci were amplified using primer pairs
and polymerase chain reaction (PCR), the protocol
described by Pandey et al. [27]. Six out of eight primers had
been developed for Acer pseudoplatanus and showed high
degree of cross-species amplification (MAP9, MAP10,

a b

Fig. 1 Map of collection sites and haplotype network in sugar maples. a Distribution of chloroplast haplotypes observed. Pie charts indicate the
frequency of haplotypes within each population. Each circle corresponds to a locality. Haplotypes found are indicated by different colors. Barrier
boundaries using nuclear data are red lines; boundaries based on chloroplast data are green lines. Boundaries, calculated in Barrier v.2.2 using the Dest
differentiation estimator for nuclear microsatellites (bootstrap support is 58 % for Midwest, 45 % for West Mexico, 41 % for South Mexico) and the
Tamura-Nei population distance measure DA for chloroplast haplotypes (bootstrap support is 55 % for Midwest, 50 % for South Mexico, 50 % for West
Mexico, 46 % for Northeast). Black, continuous line indicates natural distribution of A. saccharum in North America. All know populations in Mexico and
Guatemala of A. saccharum subsp. skutchii are represented in the map. b Network of 34 chloroplast DNA haplotypes observed. The identification letter
of each haplotype is presented. The size of the circle and the number indicate the observed frequency. The colors correspond to the alleles depicted
in the map a)
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MAP33, MAP34, MAP40, and MAP46). The forward
primer was fluorescently labeled using 6-FAM or HEX for
MAP10 (Applied Biosystems, Foster City, CA, USA)
on the 5' - end for detection on an ABI 3130XL
(Applied Biosystems, USA).
PCR and fragment analysis were carried out as follows.

PCR amplifications of 20 μL aliquots were performed
using 20 ng of genomic DNA (quantified with a Nano-
Drop 2000, Thermo Scientific, Waltham, Massachusetts,
USA), 0.2 mM dNTP, 10 μM of each primer, 1.5 mM
MgCl2, and 1 U HotStarTaq polymerase (HotStarTaq
Master Mix, Qiagen, USA). PCR programs consisted of
an initial denaturation at 95 °C for 15 min, followed by
30 cycles of 45 s at 94 °C, 45 s at appropriate annealing
temperature, and 45 s at 72 °C, and a final extension of
15 min at 72 °C. Annealing temperatures were determined
using a gradient PCR and were as follows: 52 °C (MAP9
and MAP33), 55 °C (MAP10), 55.8 °C (MAP34), 58 °C
(MAP40), 48 °C (MAP46). Two microliters of PCR product
were added to 10.8 μL of Hi-Di Formamide (Applied Bio-
systems, USA) and 0.2 μL ROX 400 HD size standard and
run on an ABI 3130XL automated sequencer. The allele
size calling (size of fragments using decimal numbers) was
done using GeneMapper v4.1 (Applied Biosystems, USA),
and the binning (conversion of alleles into discrete units)
was done with Autobin [28]. MICRO-CHECKER v2.2.3
was used to identify genotyping errors such as large allele
dropout, stutter peaks, or null alleles [29].

Chloroplast DNA sequencing
The ndhF-rpl32R intergenic spacer in the small
single-copy region and psbJ-petA intergenic spacer in
the large single-copy region from the chloroplast were
amplified [30]. Both regions are noted as highly vari-
able and several haplotypes have been observed [30].
PCR was used to amplify the two regions following
the protocol described in Shaw et al. [30] with some
modifications. Each reaction (25 μL) consisted of
20 ng of genomic DNA, 10 μM of each primer,
0.2 mM dNTP, 1.5 mM MgCl2, and 1 U HotStarTaq
polymerase (HotStarTaq Master Mix, Qiagen, USA).
PCR programs consisted of an initial denaturation at
95 °C for 15 min, followed by 35 cycles of 1 min at
95 °C, annealing at 52 °C for 1 min, followed by a
ramp of 0.3 °C/s to 65 °C, and 4 min at 65 °C, and a
final extension of 10 min at 66 °C. PCR products
were purified using the solid phase reversible
immobilization technique and sequenced in both
directions using BigDye Terminator v3.1 (Applied
Biosystems, USA) on an ABI-PRISM 3730XL. Se-
quence chromatograms were visually inspected and
edited in Sequencher v4.1 (Gene Codes Corp., Ann
Arbor, MI, USA), alignment was done in MUSCLE
[31] using the European Bioinformatics Institute web

platform (http://www.ebi.ac.uk), and manually edited
in McClade v4.08 [32] as needed. The sequences have
been submitted to GenBank with the accession num-
bers KT933356–KT933397.

Data analyses
Nuclear microsatellite diversity
Deviations from Hardy-Weinberg Equilibrium (HWE)
and linkage disequilibrium were assessed in GENEPOP
v4.1 [33]. The test was run using Markov chain parame-
ters of 1000 batches and 10,000 iterations-per-batch. A
sequential Bonferroni correction was applied to reduce
error rates. The mean number of alleles per locus and
per site and the expected (HE) and observed heterozygos-
ity (HO) per locus, as well as the private allelic richness of
each population were calculated in the R package “ade-
genet” [34]. The inbreeding coefficient (FIS) was estimated
for each population, and differences among populations
were compared using Mann-Whitney U-tests.
Each population was evaluated for evidence of popula-

tion bottlenecks. Tests were done using the approaches
described by Cornuet and Luikart [35] and Garza and
Williamson [36]. Under the Cornuet and Luikart
method, the estimates of expected heterozygosity based
on allele frequencies (HE), and on the number of alleles
and sample size (HEQ) were compared, based on the
assumption that the allele diversity is reduced faster than
the heterozygosity. The estimates were calculated under
the infinite allele model (IAM) and stepwise-mutation
model (SMM) with 1000 iterations, and the allele fre-
quency graphical mode. Significance was tested using
the Wilcoxon test with the Bonferroni correction, all
implemented in BOTTLENECK v1.2.02 [35]. Under the
Garza and Williamson method [36], the mean ratio of
the total number of alleles (k) to the range in allele size
(r) is calculated (M-ratio), where k is reduced faster than
r. Thus, a reduced M-ratio indicates a population having
been through a bottleneck. The significance of the ratio
was evaluated using the critical value (Mc) under the
two-phase mutation model (TPM), with the average size
of non one-step mutations = 2.8, as determined by [36],
and θ values from 0.01, 10, and 50. Mean M-ratio and
Mc were estimated using M_P_VAL and Critical_M
software, respectively [36].

Chloroplast diversity
Genetic variation was evaluated for each population
and region. The variation was given by number of
polymorphic sites (S), number of haplotypes (h),
haplotype diversity (Hd), average per site pairwise nu-
cleotide diversity (π), and the relationship between
polymorphic sites and alleles sampled (θw). The pa-
rameters were estimated using DNASP v5.10.01 [37].
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Genetic differentiation in nuclear microsatellite data
Significant genetic structure was determined using two
different population-based measures. Pairwise genetic
differentiation analysis was performed using FST [38]
and Dest [39] with a priori groups of individuals accord-
ing to their geographic position. The F estimator of
genetic structure θ per locus and sample was calculated
using an analysis of variance (FSTAT v2.9.3.2) [40], where
the populations are weighted according to their sample
size [38].
Patterns of structure were also assessed by permuting

allele sizes among alleles and the calculation of the FST
and the RST. Permuted values of RST larger than FST
indicate a contribution of stepwise mutations to differ-
entiation among populations. Tests were performed in
SPAGeDi v1.3 [41] using 10,000 permutations under a
regression analysis restricted to population level. RST

was used to account for the mutational distances among
alleles under the stepwise mutation model [42]. RST is
analogous to FST, but it is based on allele size rather than
allele identity.
A genetic differentiation estimate was calculated. The

estimator Dest [39] was implemented in the application
SMOGD using 1000 bootstrap replicates [43]. Dest is
determined by mutation and migration rates and num-
ber of populations, and it is independent of population
size [44]. It is more suitable for describing allelic differ-
entiation among populations than other estimates such
as GST.
To detect the number of genetically differentiated pop-

ulations without a priori assumptions of population sub-
division, a Bayesian clustering analysis was used. The
analysis was run under an admixture model with corre-
lated allele frequencies for 10 million iterations after a
burn-in period of 100,000 iterations for each value of K,
and 10 replicates per run. Population structure was in-
ferred using a range of K from one to six. The analysis
was performed in STRUCTURE v2.3.3 [45]. The Evanno
method [46] was implemented in STRUCTURE HAR-
VESTER [47] to estimate the most likely K based on the
likelihood scores. The analysis estimates coancestry coeffi-
cients for individuals assigned to each of K populations.

Genetic differentiation in chloroplast sequence data
A spatial analysis of molecular variance (SAMOVA) was
conducted to identify groups of related populations
based on geographical and genetic distances [48]. This
approach, which does not consider a priori structure
parameters, identifies groups that are geographically
homogeneous and genetically differentiated. The most
likely number of groups (K) was determined using
10,000 iterations and 10 repetitions for K values from
two to eight groups. The most likely structure was
defined by the maximum value of ΦCT (the proportion

of genetic variation among groups of populations) that
did not include any groups of a single population [49].
The analyses were carried out using SPADS v1.0 [50].
The relationships among chloroplast haplotypes were

also assessed using statistical-parsimony networks imple-
mented in R Statistical Software with the package
PEGAS [51, 52].

Spatial genetic patterns
The genetic structure was further analyzed with the
Monmonier maximum difference algorithm to confirm
the significance of structure recovered with previous
metrics. The algorithm was used to locate areas of
maximum genetic distance within a geometric network
of geo-referenced points constructed with a Delauney
triangulation.
Two different bootstrapped genetic distance matri-

ces were used, one using nuclear microsatellite data,
Dest [53], and other using chloroplast sequence data,
ΦST [49]. Matrices were bootstrapped to generate 100
datasets. A multilocus weighted average ΦST estimator
was computed using SPADS v1.0 [50] and visualized
in BARRIER v2.2 [54] to generate a graphical output
(Voronoï polygonation). The number of barrier seg-
ments analyzed ranged from two to eight. The num-
ber of overlapping segments between marker types
was determined as well as those segments unique for
a marker.

Phylogenetic relationships and divergence of haplotypes
lineages
The relationships among chloroplast haplotypes were
assessed with a phylogenetic analysis based on Bayesian
inference in BEAST v1.7.5 [55]. The chloroplast dataset
was concatenated to derive alleles and consisted of 34
haplotypes identified previously using the software
DNASP. Outgroup sequences were generated for Dipter-
onia sinensis, and Acer glabrum var. neomexicanum and
downloaded from GenBank for A. buergerianum subsp.
ningpoense (KF753631.1). Dipteronia and Acer are sister
clades (subfamily Hippocastanoideae) [56]. The best-fit
nucleotide substitution model was estimated using jMo-
deltest v2.3 [57, 58]. The GTR nucleotide substitution
model was chosen under an Akaike Information Criter-
ion (AIC). Uncorrelated lognormal relaxed molecular
clocks with a coalescent approach prior assuming con-
stant population size were used. For divergence analyses,
a lognormal prior was placed on the tree root, using
substitution rates for the chloroplast regions that were
calculated using a pairwise sequence divergence analysis
(Acer-Dipteronia) with Jukes-Cantor correction. The
resulting estimate (Dxy = 0.06788, SD 0.04) was divided by
twice the divergence time estimated for Acer (14.6 Ma,
[51]) to obtain per-lineage rate subs/site/Myr (0.06788/
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29.2 = 0.0023/1000000). The analysis comprised two in-
dependent runs with 107generations, sampling every
1,000 generations and discarded the first 25 % as
burn-in. Effective sample sizes (ESS) of parameter
estimates and convergence and mixing of runs were
assessed using Tracer v1.5 [59]. The results of sepa-
rated runs were combined using LogCombiner v1.7.5
[55]. A maximum clade credibility tree was generated
in TreeAnnotator v1.7.5 [55] and examined with
FigTree v1.7.5 [55].

Hypothesis testing: single and multiple glacial refuge
models
Coalescent simulations were used to test whether pat-
terns of population differentiation are consistent with
the single or multiple refuge models. The two a priori
hypotheses of Pleistocene population structure tested
were the single refugium null model and the multiple
glacial refuge model. The gene-tree population-tree
approach was applied, following Knowles [60] and
implemented in MESQUITE v3.04 [61]. Haplotype
gene trees (1000 replicates) were simulated by neutral
coalescence with invariable effective population size
(Ne) until total coalescence. Five arbitrary Ne were
tested (10,000, 50,000, 100,000, 150,000, 225,000). The
amount of discordance between the gene trees and
the hypothesized populations trees was measured by
the s statistic [62]. The s value for the haplotype tree
was first obtained and then, the distribution of simu-
lated s values for each population tree was analyzed
and graphed.
The single refugium hypothesis assumes that extant

populations of sugar maple are derived from a refu-
gial population, with expansion beginning as the gla-
ciers retreat. The divergence time of populations was
estimated to early, middle and most recent Pleisto-
cene glacial events. The null model of fragmentation
of a single ancestral population is rejected if the s
value for the haplotype tree falls outside of the 95 %
confidence interval for that model [61].
Under the multiple glacial refuge model, the extant

population structure of haplotypes results from
isolation and divergence within four hypothesized
glacial refugia. Glacial refugia were represented by
assemblages of populations from: a) West Mexico, b)
Midwest USA c) Southeast USA – East Mexico –
Guatemala, d) Northeast USA. We tested whether
populations a and b were isolated since early Pleisto-
cene (30,000 generations / 1.2 Ma) or before (98,750
generations / 3.9 Ma); and a recent split of c and d
groups at 6250 generations / 250,000 ybp, or 3500
generations / 140,000 ybp or 500 generations /
20,000 ybp.

Results
Nuclear microsatellite diversity
A total of 17 alleles were detected at the six micro-
satellite loci. The total number of observed alleles
varied from two (MAP40) to seven (MAP34), and
allelic richness ranged from 1.5 to 2.1. Private alleles
were present in one locus (MAP34) in the Tamau-
lipas, Chiapas, Jalisco, and Maine populations. Depar-
tures from the HWE were found in two populations
from western Mexico and four from the USA (mid-
western: 2, northeastern: 1, and southeastern: 1)
(Table 1). Observed heterozygosity ranged from 0.133
± 0.1 to 0.340 ± 0.1 and expected heterozygosity from
0.132 ± 0.08 to 0.284 ± 0.1 (Table 1). The FIS per
population ranged from -0.47 to 0.395. Two popula-
tions in Mexico showed a tendency toward increased
homozygosity (Guerrero 0.005, Chiapas 0.09), whereas
among the USA sites, only populations from Vermont,
Ohio, and Tennessee did not exhibit this homozygosity
pattern (Table 1). FIS significantly differed between the
tropical peripheral sites (Chiapas–Guatemala) and the
populations in USA (southeastern U = 12, P = 0.039;
midwestern U = 14.5, P = 0.02; northeastern U = 22.5,
P = 0.04).
Genetic signatures of population bottlenecks were

detected, although there was disagreement between the
different tests used. The M ratio test indicated that only
populations located in the northern and western Mexico
and Guatemala experienced a bottleneck, likely lasting
several generations. The Wilcoxon test did not indicate
a significant recent bottleneck (heterozygosity excess) in
any of the populations and under any models. These
results were not consistent, however, with the distribu-
tion of allele frequency. Eight populations (one in
Mexico and two in Guatemala) displayed a mode shift,
indicating that a bottleneck had occurred. In contrast,
the normal L-shape distribution of allele frequencies
indicated that eight populations had not experienced a
recent bottleneck. Under the mutation-drift equilibrium
scenario, the rarest allele class was more frequent, form-
ing an L-shape graph [63]. After a bottleneck, the rarest
alleles were rapidly lost, resulting in a mode-shift distor-
tion (Table 1).

Chloroplast diversity
A number of haplotypes were recovered from two
chloroplast regions. Chloroplast sequences of the psbJ-
petA and the ndhF-rpl32R intergenic spacer were 729
and 770 nucleotides long, respectively. The total number
of haplotypes in the concatenated sequences was 34, and
diversity Hd = 0.8609. The spacer ndhF-rpl32R had a
haplotype diversity Hd = 0.667, and nucleotide diver-
sity π = 0.00295 [53]; and the spacer psbJ-petA had
Hd = 0.620 and π = 0.00168.
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Haplotype diversity was variable among populations
(Hd from 0-1). A site in Guatemala had only one
haplotype, whereas larger numbers of haplotypes oc-
curred in the southeastern and midwestern USA
(Table 2). Nucleotide diversity was low in all popula-
tions (π from 0–0.00288), but the southeastern USA
region had the highest (π = 0.00253), followed by the
midwestern region (π = 0.00109). The site with the lowest
nucleotide diversity was in western Mexico (π = 0.0009)
(Table 2).

Genetic differentiation in nuclear microsatellite data
There was variation in genetic structure across the 16
populations. The pairwise θ (FST) values ranged from
-0.0703 to 0.5082 indicating differentiation among
populations (Additional file 2). The values for Dest
were low and varied from 0.00008 to 0.0911

(Additional file 2). A permutation test of pairwise RST

and FST indicated that alleles were more related be-
tween nearby populations than between distant popu-
lations (slope coefficient b = 0.0075).
The results given by the estimator Dest, which accounts

for small sample sizes, indicated virtually identical allele
frequencies among populations in Illinois, Michigan, and
Pennsylvania, as well as between populations in northern
Mexico and one in Guatemala. All values of genetic differ-
entiation were low, with the highest differentiation occur-
ring between the northeastern USA populations and
populations in Guerrero (west) and Chiapas (south) in
Mexico (Additional file 2). Populations in the midwestern
USA differed from those in Guerrero and Jalisco (western
Mexico), as well as from Guatemalan populations
(Additional file 2). Consistent with the Dest estimator, the
highest differentiation, given by the FST metric, occurred

Table 1 Diversity values obtained from nuclear data (microsatellites)1

Locality HWE,
P-Values

Mean
number
of alleles

Mean HO

(± SE)
Mean HE

(±SE)
FIS Bottleneck

graphical shape
Bottleneck
under IAM
(P)

Bottleneck
under SMM
(P)

Mean
M value

Mc

Maine, U.S.A. 0.06 1.833 0.222
± 0.14

0.263
± 0.12

0.154 Shifted mode 0.0625 0.0625 0.4962 0.4445

Vermont, U.S.A. 0.199 1.667 0.150
± 0.11

0.122
± 0.08

−0.227 Normal L-shaped
distribution

0.9375 0.9375 0.4648 0.4630

Pennsylvania, U.S.A. 0.013 1.833 0.270
± 0.16

0.284
± 0.10

0.047 Shifted mode 0.09375 0.09375 0.5204 0.4630

Ohio, U.S.A. 0.723 1.833 0.219
± 0.14

0.170
± 0.10

−0.283 Normal L-shaped
distribution

0.875 1 0.4684 0.4630

Michigan, U.S.A. 0.033 1.667 0.133
± 0.11

0.220
± 0.11

0.395 Shifted mode 0.125 0.8125 0.4926 0.4630

Illinois, U.S.A. 0.011 1.833 0.183
± 0.14

0.232
± 0.10

0.213 Normal L-shaped
distribution

0.5625 0.90625 0.5204 0.4445

Tennessee, U.S.A. 0.632 2 0.250
± 0.13

0.247
± 0.1

−0.011 Shifted mode 0.4375 0.84375 0.5239 0.4630

Alabama, U.S.A. 0.019 1.5 0.133
± 0.13

0.152
± 0.08

0.122 Shifted mode 0.8125 0.8125 0.4891 0.4630

Tamaulipas, Mexico 0.109 2.164 0.3
± 0.14

0.225
± 0.10

−0.331 Normal L-shaped
distribution

0.125 0.8125 0.4997 0.6359

Ojo de Agua del Cuervo,
Jalisco, Mexico

0.005 1.667 0.165
± 0.12

0.132
± 0.08

−0.247 Normal L-shaped
distribution

0.8125 0.9375 0.4648 0.6388

Sierra de Manantlan Biosphere
Reserve, Jalisco, Mexico

0.015 1.833 0.196
± 0.13

0.147
± 0.08

−0.33 Normal L-shaped
distribution

0.8125 0.9375 0.4926 0.5984

Guerrero, Mexico 0.151 2 0.214
± 0.12

0.215
± 0.08

0.005 Normal L-shaped
distribution

0.90625 0.9375 0.5482 0.5085

Chiapas, Mexico 0.452 2.165 0.222
± 0.11

0.244
± 0.09

0.09 Shifted mode 0.84375 0.96875 0.5275 0.4445

Quiche, Guatemala 0.204 1.667 0.294
± 0.14

0.210
± 0.09

−0.401 Shifted mode 0.125 0.1875 0.4891 0.5356

Zacapa, Guatemala 0.141 2 0.340
± 0.15

0.256
± 0.11

−0.331 Shifted mode 0.0625 0.125 0.4962 0.6061

El Progreso, Guatemala 0.208 1.833 0.281
± 0.16

0.191
± 0.10

−0.47 Normal L-shaped
distribution

0.8125 0.9375 0.4697 0.4630

1Hardy-Weinberg Equilibrium (HWE); Observed Heterozygosity (HO), Expected Heterozygosity (HE), Inbreeding coefficient (FIS). Bottleneck estimates under the
Stepwise Mutation Model (SMM), the Infinite Allele Model (IAM), as well as the M ratio test using θ = 50. M ratio below Mc indicates a bottleneck (in italics)
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between northeastern USA and the Mexican popula-
tions from Guerrero, Jalisco (west), and Chiapas
(south) (Additional file 2).
The Bayesian clustering analysis was moderately in-

formative. The highest log probability of the data, Ln
P(D) = -1158.03, inferred that the most likely number of
clusters (K) was two (Additional file 3). Membership co-
efficients for one cluster ranged from 0.617 to 0.816 and
from 0.723 to 0.934 in the second cluster.

Genetic differentiation in chloroplast sequence data
The optimal number of groups indicated by SAMOVA
was K = 4 (ΦCT = 0.545 P = 0.001; 0 singleton populations).
Higher levels of K included single-population groups with
only a slight increase in the index (Additional file 4).
The genetic structure identified by SAMOVA (K = 4)
consisted of one group composed by the populations from
Guatemala, Mexico (excluding Jalisco), the Southeast
USA, and Ohio. A second group included only the
populations from western Mexico (Jalisco), and the
Northeast and the Midwest USA populations each
composed the third and fourth group.

The number of chloroplast haplotypes from all Acer
populations was 34. Haplotype “AA” was the most
frequent and widespread, occurring in half of the sites
(Guatemala, northern and southern Mexico, south-
eastern USA, and Ohio) (Fig. 1). The second most
frequent were the haplotypes “H” and “Y”, both with
the same frequency. Haplotype “Y” was exclusive to
northeastern USA, whereas “H” was unique to popu-
lations in western Mexico. Haplotypes “M” and “K”
were frequent in the midwestern USA sites (Fig. 1).
“E” and “F” were exclusive to western Mexico and
“D” to northeastern USA. The remaining haplotypes
were unique and confined to a single region.

Spatial genetic patterns
Geographic boundaries detected by the Monmonier
algorithm supported the separation of midwestern
USA and western Mexican sites. The bootstrap
support of the segments ranged from 46–55 % (Fig. 1),
whereas SAMOVA results, based on chloroplast data, sup-
ported the regional subdivisions (ΦCT = 0.545 P = 0.001).
Boundaries were also indicated using nuclear data.

Strong genetic change occurred among populations in

Table 2 Nucleotide polymorphism and diversity in psbJ-petA and ndhF-rpl32R chloroplast regions2. Values are given by population
and by regions

Locality (S) (h) (Hd) (±1 SD) (π) (±1 SD) (qw)

Maine, U.S.A. 3 4 0.81 ± 0.13 0.00072 ± 0.00019 0.00084

Vermont, U.S.A. 1 2 0.4 ± 0.24 0.00028 ± 0.00016 0.00033

Pennsylvania, U.S.A. 4 5 0.786 ± 0.15 0.00082 ± 0.00023 0.00107

Ohio, U.S.A. 5 4 0.643 ± 0.18 0.00098 ± 0.00045 0.00133

Michigan, U.S.A. 1 2 0.476 ± 0.17 0.00033 ± 0.00012 0.00028

Illinois, U.S.A. 8 5 0.857 ± 0.14 0.0017 ± 0.0006 0.00225

Tennessee, U.S.A. 12 7 1 ± 0.07 0.00288 ± 0.00092 0.0034

Alabama, U.S.A. 2 2 1 ± 0.5 0.00138 ± 0.00069 0.00138

Tamaulipas, Mexico 7 3 0.378 ± 0.18 0.00096 ± 0.00063 0.00171

Ojo de Agua del Cuervo, Jalisco, Mexico 4 4 0.643 ± 0.18 0.00069 ± 0.00027 0.00106

Sierra de Manantlan Biosphere Reserve, Jalisco, Mexico 2 2 0.25 ± 0.18 0.00035 ± 0.00025 0.00053

Guerrero, Mexico 1 2 0.667 ± 0.31 0.00046 ± 0.00022 0.00046

Chiapas, Mexico 5 4 0.8 ± 0.17 0.00129 ±0.00046 0.00151

Quiche, Guatemala 3 4 0.694 ± 0.15 0.00058 ± 0.00017 0.00076

Zacapa, Guatemala 0 1 0 ± 0 0 ± 0 0

El Progreso, Guatemala 3 3 0.524 ± 0.20 0.00059 ± 0.00028 0.00084

Regions

Northeast USA 5 6 0.732 ± 0.1 0.00071 ± 0.00015 0.00101

Midwest USA 8 6 0.762 ± 0.08 0.00109 ± 0.00038 0.00169

Southeast USA 13 8 0.972 ± 0.06 0.00253 ± 0.00081 0.00332

Western MX (Jalisco and Guerrero states) 9 7 0.608 ± 0.13 0.0009 ± 0.00025 0.00178

South MX and Guatemala 10 8 0.484 ± 0.11 0.00055 ± 0.00017 0.00173
2Number of polymorphic sites (S), number of haplotypes (h), haplotype diversity (Hd), average per site pairwise nucleotide diversity (π), relationship between
polymorphic sites and alleles samples (qw)
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Mexico and USA and between Mexican and Guate-
malan populations, suggesting current limits to gene
flow (bootstrap support 41–58 %) (Fig. 1). In addition,
results indicated a higher subdivision in those popula-
tions in tropical regions (Fig. 1).

Phylogenetic relationships and divergence of haplotypes
lineages
The Bayesian topology resolved three main and well-
supported clades. Relationships among the haplotypes
from western Mexico (Jalisco) received high support
(0.98) (Fig. 2). Haplotypes from the Midwest USA
formed a well-supported monophyletic group with
high posterior probability (0.98) (Fig. 2). The rest of
the haplotypes formed a group with a probability of
0.84. Haplotypes from Guatemala, Mexico, and Tennes-
see were related to those from the Northeast USA (Fig. 2).
Divergence dating for haplotypes estimated a time for the
most common ancestor between the lineage occurring in
Jalisco (western Mexico) and the rest of the tropical and
temperate sugar maple phylogroups as the Pliocene, at
5.4 Ma (95 % HPD: 4.1–7.3). A split between the haplotypes

from the midwestern USA and the phylogroups from
Mexico, Guatemala, southeastern USA, and northeast-
ern USA was dated to the early Pleistocene, at
2.5 Ma (95 % HPD: 1.2–5.9), whereas the Northeast
USA lineage split was in the Pleistocene, at 1.4 Ma
(95 % HPD: 0.2–3.8) (Fig. 2).

Hypothesis testing: single and multiple glacial refuge
models
The single refugium null model was not supported
by the data. The Slatkin and Maddison’s s statistic
from the gene tree was s = 14. The observed value of
s = 14 was not within the 95 % confidence interval of
the simulated distribution under any of the different
times of population splitting and for all Ne values.
The multiple glacial refuge model could not be

rejected. The observed s = 14 falls within the 95 % confi-
dence interval (Additional file 5). The simulations for the
estimate of Ne = 225,000 with a Southeast – Northeast
USA population divergence at 250,000 ybp and population
split at 1.2 Ma of the Midwest USA group were
supported.

Fig. 2 Maximum clade credibility tree of chloroplast haplotypes showing phylogenetic relationships among samples of sugar maples occurring in
North and Central America. Posterior probabilities and mean divergence time for haplotype lineages are given. Numbers in brackets indicate the
highest 95 % posterior density intervals. Colors correspond to the haplotypes depicted in Figure 1
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Discussion
Data on nuclear and chloroplast DNA of sugar maple
collected from North and Central America recovered
signatures of past connectivity, disjunctions, and genetic
structure among populations. Populations in western
Mexico (Jalisco) and the midwestern USA had the high-
est genetic differentiation; their haplotype lineages
diverged, respectively, during the Pliocene and early
Pleistocene. Further differentiation of northeastern USA
haplotype lineages was dated to the pre-Illinoian glacial
episode (Pleistocene). Population in the southeastern
USA, eastern Mexico, and Guatemala displayed signals
of past connectivity and lack genetic differentiation. In
addition, most populations in the tropics had increased
homozygosity and lower genetic diversity, possible as a
result of bottlenecks lasting many generations. Haplo-
type data suggested the presence of multiple glacial refu-
gia; the tropical populations likely acted as refugia
during the Quaternary glacial and interglacial events,
while two other refugia were maintained in the Midwest
and north of the Appalachian Mountains.

Genetic diversity and geographic structure
Low levels of genetic diversity from nuclear DNA
data were observed in all populations. A greater ten-
dency toward homozygosity occurs in maples from
western and southern Mexico compared to maples
Vermont, Ohio, and Tennessee. The trend could be
the result of a genetic bottleneck in southern Mexico.
The reduced genetic variation is also present in the
Guatemalan populations. The increased homozygosity
in southern tropical populations indicates that popula-
tions at the most southern ends of the range of this
species should be the most vulnerable to new selec-
tion pressures. Populations in southern Mexico and
Guatemala are also the most threatened by anthropo-
genic disturbance [19]. Consistently, low values in nu-
clear markers with high mutation rates reflect
fragmentation patterns and reductions in population
sizes in recent times. Low to moderate diversity has also
been observed in Acer saccharum in populations from
Canada, possibly a result of genetic drift [23–25]. Never-
theless, genetic variation may be underestimated across
species using the same markers, because microsatellites
are subject to ascertainment bias [64]. In addition, a more
accurate estimation of genetic diversity should be obtained
by increasing the number of microsatellites.
Chloroplast gene diversity in most maple populations

was variable. High levels of nucleotide and haplotype
diversity were distributed in the southern and the mid-
western regions of the USA. High nucleotide diversity
(π) also was also observed in the southern population of
Chiapas, Mexico. Nevertheless, populations in tropical
regions contained the lowest haplotype diversity. Gunter

et al. [65] found the greatest sugar maple genetic diver-
sity in the southern region of Tennessee and the lowest
in the northern area of Wisconsin. Latitude was sug-
gested to be responsible for trends in genetic diversity
[66]; no significant latitudinal pattern in genetic diversity
was observed, however, when analyzing the chloroplast
DNA [26]. Rates of chloroplast evolution are slow com-
pared to nuclear microsatellites; thus, the chloroplast
data could reflect past population sizes and past gene
flow between southeastern USA and the easternmost
tropical maples of Mexico and Guatemala.
The genetic structure recovered with nuclear and

chloroplast DNA indicates general patterns of con-
nectivity among populations. Nuclear data suggest
current gene flow and larger effective population sizes
in southeastern and northeast USA, whereas the op-
posite is true in the tropical populations, having
disjunct and geographically fragmented populations.
Chloroplast data indicate that very little gene flow
has occurred among the midwestern sites and the rest
of the populations in the USA since some distant
time in the past.
Haplotypes from more southern regions may be

considered ancestral, which is suggested by high fre-
quency and distribution of haplotypes in southeastern
USA and south Mexico and Guatemala. Haplotype
lineages in western Mexico (Jalisco) were the first to
diverge, during the Pliocene. Eastern Mexican and
Guatemalan lineages had a time for the most com-
mon ancestor similar to the northeastern USA popu-
lations, dated to the pre-Illinoian glacial period. The
haplotypes from the Midwest, supported as a lineage
by Bayesian inference, have survived isolated since the
early Pleistocene (when ice-sheets began to grow), with
possible gene migrations from more central (Ohio) or
southern (Alabama) ice-free areas. Samples from Iowa,
Missouri, as well as sequences of other chloroplast regions,
may help to clarify the routes of migration for the midwest-
ern populations.

Patterns of genetic differentiation
The results from the STRUCTURE analysis suggested
that the genotyped individuals fall into two general
clusters. Thus, there is one cluster from the tropics,
which also includes Alabama, and one cluster com-
posed of USA sites, but excludes the Southeast USA.
These results contrasted with Dest and FST measures.
Bayesian clustering analysis did not differentiate the west-
ern Mexico populations, whereas Dest and FST gave strong
support for these populations as a different group. Similarly,
the population in Chiapas was assigned to the USA cluster
with STRUCTURE, but it was differentiated using Dest and
FST. The Chiapas population might represent an outlier,
possible due to the high levels of homozygosity and
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reduced population sizes. Caution is needed in making
inferences, however, because the accuracy of the assign-
ments in STRUCTURE is affected when there are insuffi-
cient microsatellite markers [45].
Populations in midwestern USA and western Mexico

were highly differentiated from the rest of the sites
under study. Dest and FST supported differentiation for
nuclear DNA and SAMOVA for chloroplast DNA. Their
isolation thus appears to be old and is supported by the
time for the most common ancestor estimates for haplo-
types in this study. Our data further suggest very limited
present gene flow (via pollen dispersal) from Alabama to
the populations in the Midwest.
The nuclear DNA also indicates lack of gene flow

at the present time between the northern Mexico and
southern USA populations. Nonetheless, the signal of
past connectivity among the Southeast USA, East
Mexico, and Guatemalan populations is still present,
as indicated by the low chloroplast differentiation
among these populations. Similar signals of past con-
nectivity have been identified between populations of
Liquidambar styraciflua in the southeastern USA and
Mexico [8]. Populations in Mexico also exhibit differ-
entiation from each other as a result of geographic
barriers and a highly fragmented landscape. Although
geographically close, Guatemalan populations also dis-
played a lack of pollen flow. This suggests that in
addition to a mountain barrier, the population sizes
are small, pollen dispersion is limited, and there are
no intermediate patches of maples that might increase
connectivity at the present time. Similar degrees of
reproductive isolation after the last glaciation and
landscape fragmentation have been recorded for other
temperate trees such as Fagus grandifolia and Pinus
chiapensis in Mexico [13, 15].

Pliocene–Quaternary glacial and interglacial effects on
populations
Pliocene events and western Mexico population divergence
Populations of Acer saccharum could have become
established in western Mexico during the Pliocene or
late Miocene, when the temperatures were low. The
presence of other temperate tree genera (e.g., Platanus
and Populus) during the Pliocene in central Mexico is
supported by the presence of macrofossils [67]. In
addition, a probable arrival in Mexico during the Mio-
cene/Pliocene has been suggested for other cloud forest
trees, such as Liquidambar and Podocarpus matudae
[68–70].
The uplift of the Trans-Mexico Volcanic Belt, a major

mountain barrier stretching from west to east across
the country, isolated western areas of Mexico in the
late Miocene. This mountain belt was characterized by
major volcanic activity during the late Pliocene and the

Quaternary, mainly along the western side [71, 72]. The
volcanic activity and extensive accumulation of volcani-
clastic particles during the Quaternary could have
isolated western maple populations in Jalisco and Guer-
rero by preventing immigration, thereby facilitating the
divergence of already established populations. Further,
the volcanic belt could have blocked northern cold
fronts, creating climatic conditions that promoted
growth of ample areas of dry forests in western Mexico
as well as fragmenting and reducing cold and humid
areas, which are most suitable for maple establishment
[73]. This ancient division among maples is suggested
by the high differentiation between western populations
and the rest of the study sites, the presence of different
haplotypes, and strong barriers, as well as by the time
for the most common ancestor values. These findings
suggest that the taxonomic status of the western Mexico
populations needs to be reconsidered (Vargas-Rodriguez in
review).

Pleistocene effects on populations
Glacial periods during the Pleistocene could have favored
species expansions with continuous gene flow through
eastern–southern Mexico to Guatemala, which then
ended after the last glacial maximum (18,000 years B.P.).
Pollen from cores of the Basin of Mexico indicates three
glacial advances during 30,000–25,000 years B.P.,
12,000 years B.P., and during late Holocene [74, 75]. A
relative stable humidity during glacial events could have
facilitated expansion and population connectivity in the
tropical areas. A warm period of the middle Holocene and
the “Medieval Warm Period” (1038–963 years B.P.) [76]
might have helped produce the current fragmented distri-
bution of Acer in cloud forests. Even though the Trans-
Mexico Volcanic Belt reaches eastern Mexico, it had
reduced volcanic activity along its eastern side [71] and,
together with the presence of continuous mountain ridges,
this might have allowed a steady connection among popu-
lations in eastern–southern Mexico and Guatemala. The
sites in Ohio and southern USA share the same chloro-
plast haplotypes with those in northern and southern
Mexico and Guatemala sites, but they are differentiated
from the Jalisco and, to a lesser extent, the Guerrero
populations (western Mexico).

Hypotheses of Pleistocene refugia
Small maple refugia may have existed in the Midwest
USA and north of the Appalachian Mountains. A
population in the Midwest might have persisted
through the glaciations from the beginning of Pleisto-
cene, experienced possible gene flow from the sites in
the south (Alabama), but remained isolated from the
more eastern sites (Ohio, Tennessee). The Mississippi
River Valley is hypothesized to have increased genetic
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differentiation to the east and the west of the river in
Pinus and Juglans [1], and the river valley probably
also affected the migration of Acer during the Pleisto-
cene. Another small maple refugium should have oc-
curred in Ohio, based on the diversity of haplotypes.
The Ohio population also shared a larger proportion
of the most abundant haplotype with the southeastern
and tropical sites, and a smaller proportion of haplo-
types from the northeastern site. Maples in the
Northeast might have expanded from a refugium in
the northern area of the Appalachian Mountains.
During the last glaciations, ice-free areas existed in
the Pennsylvania region, from where the maples could
have migrated following deglaciation [77]. The low
haplotype diversity found here suggests genetic drift
in small refugial populations from the Northeast. It
has been proposed that plants survived ice ages on
small island-like areas protruding above the ice-sheets
in the North Atlantic zone; however, climatically
harsh conditions also could have prevented in situ
glacial survival of maples [20, 78, 79]. Thus, maples
in the Northeast likely migrated from periglacial areas
of the Pennsylvania region [80]. On the other hand,
physiographic conditions of northern Appalachians re-
stricted maple gene flow from the south to the north-
east during the last 14,000–10,000 years B.P. [22].
This barrier in gene flow is supported by the haplo-
type data. Low-density populations of Acer rubrum
and Fagus grandifolia could also have persisted in
periglacial areas in Ohio, expanding following deglaci-
ation and making a more important contribution to
species expansion than other populations in the
southeastern USA [9, 11, 12]. Thus, the assumption
of a single refugium of sugar maples in the Gulf
Coastal Plain during the glaciations in the Pleistocene
does not appear to be valid [1, 17]. Our results sup-
ported that the idea that the midwestern USA has
provided refugia most likely onward from the early
Pleistocene. Parts of the area remained ice-free during
the last glaciation and allowed the persistence of de-
ciduous species [81]. Recent phylogeographic evidence
for Smilax also supports the hypothesis that the Mid-
west served as a refugium [82]. Moreover, temperate
tree populations in the tropics, usually overlooked
[83], have also been an important gene reservoir, act-
ing as refugia during the Pleistocene.

Late Quaternary population patterns
Habitat fragmentation may have resulted from increased
dry and warm conditions that followed the last glacial
maximum. In addition, anthropogenic habitat transform-
ation has affected the cloud forests containing sugar
maples in Mexico and Guatemala [19]. Reduced popula-
tion sizes, lack of gene flow, genetic bottlenecks, and

increases in homozygosity now characterizing these pop-
ulations will probably be rapidly exacerbated by ongoing
anthropogenic activity. Thus, historical processes and
disturbances are contracting the most southern end of
the ranges of sugar maple trees. Recent strong warming
conditions are promoting a northward migration of
sugar maples shifting the range towards a more northern
limit in Canada [84].

Conclusions
Reduced genetic variation currently is present in the most
southern tropical maple populations, as indicated by nu-
clear and chloroplast data. Haplotype diversity and distri-
bution indicate past connectivity among populations from
the Southeast USA, East Mexico, and Guatemala. Thus,
gene flow and species expansion through eastern–south-
ern Mexico to Guatemala was likely favored during glacial
periods of stable humidity during the Quaternary. Earlier,
western Mexican (Jalisco) populations diverged from the
rest of the sugar maples during the Pliocene. Volcanic
activity during late Pliocene and Quaternary and topo-
graphic conditions in western Mexico probably promoted
this early differentiation. The time for the most common
ancestor estimates denote that midwestern USA popu-
lations have been different lineages since the early
Pleistocene and that northeastern USA lineages di-
verged during the pre-Illinoian glaciation, long before
the Last Glacial Maximum. Small maple refugia may
have existed in the midwestern USA and north of the
Appalachian Mountains, and expansion may have oc-
curred from such refuges during interglacial periods.
Thus, we suggest that geological events in the Plio-
cene were major determinants of the current genetic
structure of sugar maple populations in the area of
West Mexico, whereas the geological events that
occurred during the Quaternary explain the genetic
structure of sugar maples in East Mexico and the
USA. This study supports the notion of multiple gla-
cial refugia for temperate hardwood forests in North
and Central America and highlights the importance of
connectivity among temperate forests in the USA and
those in Central America.

Availability of supporting data
The chloroplast DNA data set supporting the results of
this article is available in GenBank, with the accession
numbers KT933356–KT933397.
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Additional file 1: The sugar maple populations studied and the
geographic information from the sampled localities. Population and
ecological characteristics for Mexican and Guatemalan populations are
given elsewhere [19]. (DOC 47 kb)
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Additional file 2: Below diagonal, FST: the proportion of genetic
diversity due to allele frequency differences among populations.
Above diagonal, Dest: estimator of actual differentiation. High values are
in bold and imply a degree of differentiation among populations. (DOC 49 Kb)

Additional file 3: Graphical summary of Bayesian clustering. a)
Geographical subdivision as inferred using STRUCTURE. Two clusters are
distinguishable: one (in red) includes populations from Guatemala (PR,
ZA, QC), Mexico (Tamps, Tal, Man), and Alabama (AL). Membership
coefficients for the red cluster ranged from 0.617 to 0.816. A second
cluster in green comprises populations from Northeast USA (ME, PA),
Midwest USA (MI, IL), and the most southern site in Mexico (Chiapas,
Chis). Coefficients ranged from 0.723 to 0.934 in green cluster. b)
Likelihood score differences (DeltaK) with highest difference between
K = 2 and K = 3. (DOC 629 kb)

Additional file 4: Fixation indices and number of singleton
populations obtained from the spatial analyses of molecular
variance (SAMOVA) of sugar maple’s chloroplast DNA data.
(DOC 28 kb)

Additional file 5: Distribution of Slatkin and Maddison’s s statistic
for 1000 simulated gene trees within a population tree.
Ne = 225,000. Observed s = 14 (asterisk) indicates that the population
structure is consistent with the multiple refuge hypothesis. (DOC 219 kb)
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